404 research outputs found

    Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen

    Get PDF
    The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential with different symmetries is systematized for the case when the rotational angular momentum JJ is a good quantum number. One goal of this program is to interpret the energy-resolved neutron time of flight spectrum previously obtained for H2_{2}C60_{60}. This spectrum gives direct information on the energy level spectrum of H2_2 molecules confined to the octahedral interstitial sites of solid C60_{60}. We treat this problem of coupled translational and orientational degrees of freedom a) by construction of an effective Hamiltonian to describe the splitting of the manifold of states characterized by a given value of JJ and having a fixed total number of phonon excitations, b) by numerical solutions of the coupled translation-rotation problem on a discrete mesh of points in position space, and c) by a group theoretical symmetry analysis. Results obtained from these three different approaches are mutually consistent. The results of our calculations explain several hitherto uninterpreted aspects of the experimental observations, but show that a truly satisfactory orientational potential for the interaction of an H2_2 molecule with a surrounding array of C atoms has not yet been developed.Comment: 53 pages, 9 figures, to appear in Phys. Rev B (in press). Phys. Rev. B (in press

    Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high mobility GaAs/AlGaAs devices

    Get PDF
    We suggest an approach for characterizing the zero-field spin splitting of high mobility two-dimensional electron systems, when beats are not readily observable in the Shubnikov-de Haas effect. The zero-field spin splitting and the effective magnetic field seen in the reference frame of the electron is evaluated from a quantitative study of beats observed in radiation-induced magnetoresistance oscillations.Comment: 4 pages, 4 color figure

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure

    Ambient levels and dry deposition fluxes of mercury to Lakes Huron, Erie and St. Clair

    Full text link
    Ambient concentrations and dry deposition fluxes of Hg in the gas and particle phase to Lakes St. Clair, Erie and Huron were estimated with a hybrid receptor-deposition model (HRD). The ambient gas and particulate phase Hg concentrations were predicted to vary by a factor of 12 to 18 during the transport of air masses traversing the lakes. The ensemble average deposition fluxes of fine particle Hg ranged from 7 pg/m 2 -h to 15.3 pg/m 2 -h over Lake St. Clair, 0.5 to 4.2 pg/m 2 -h over Lake Huron and 5.1 to 20.6 pg/m 2 -h over Lake Erie. The deposition flux of coarse particle Hg was in the range of 50 to 84 pg/m 2 -h over Lake St. Clair, 4.7 to 24.2 pg/m 2 -h over Lake Huron and 5.1 to 20.6 pg/m 2 -h over Lake Erie. Gaseous Hg volatilized at a rate of 0.21 to 0.52 ng/m 2 -h from Lake Huron and 0.13 to 0.36 from Lake Erie. Gas phase Hg was deposited at a rate of 5.9 ng/m 2 -h and/or volatilized at a rate of 0.5 ng/m 2 -h from Lake St. Clair depending upon the location of the sampling site used in the HRD model. The effect of meteorological conditions, particle size distributions and type and location of the sampling sites played an important role in the transfer of atmospheric Hg to and/or from the lakes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43911/1/11270_2005_Article_BF01189666.pd

    Non-Invasive Mouse Models of Post-Traumatic Osteoarthritis

    Get PDF
    SummaryAnimal models of osteoarthritis (OA) are essential tools for investigating the development of the disease on a more rapid timeline than human OA. Mice are particularly useful due to the plethora of genetically modified or inbred mouse strains available. The majority of available mouse models of OA use a joint injury or other acute insult to initiate joint degeneration, representing post-traumatic osteoarthritis (PTOA). However, no consensus exists on which injury methods are most translatable to human OA. Currently, surgical injury methods are most commonly used for studies of OA in mice; however, these methods may have confounding effects due to the surgical/invasive injury procedure itself, rather than the targeted joint injury. Non-invasive injury methods avoid this complication by mechanically inducing a joint injury externally, without breaking the skin or disrupting the joint. In this regard, non-invasive injury models may be crucial for investigating early adaptive processes initiated at the time of injury, and may be more representative of human OA in which injury is induced mechanically. A small number of non-invasive mouse models of PTOA have been described within the last few years, including intra-articular fracture of tibial subchondral bone, cyclic tibial compression loading of articular cartilage, and anterior cruciate ligament (ACL) rupture via tibial compression overload. This review describes the methods used to induce joint injury in each of these non-invasive models, and presents the findings of studies utilizing these models. Altogether, these non-invasive mouse models represent a unique and important spectrum of animal models for studying different aspects of PTOA

    Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19.

    Get PDF
    BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.)

    Incised valley paleoenvironments interpreted by seismic stratigraphic approach in Patos Lagoon, Southern Brazil

    Get PDF
    <div><p>ABSTRACT: The Rio Grande do Sul (RS) coastal plain area (33,000 km 2 ) had its physiography modified several times through the Quaternary, responding to allogenic and autogenic forcings. The Patos Lagoon covers a significant area of RS coastal plain (10,000 km 2 ), where incised valleys were identified in previous works. About 1,000 km of high resolution (3.5 kHz) seismic profiles, radiocarbon datings, Standard Penetration Test (SPT) and gravity cores were analyzed to interpret the paleoenvironmental evolution as preserved in incised valley infills. Seismic facies were recognized by seismic parameters. The sediment cores were used to ground-truth the seismic interpretations and help in the paleoenvironmental identification. Key surfaces were established to detail the stratigraphical framework, and seismic facies were grouped into four seismic units, which one classified in respective system tracts within three depositional sequences. The oldest preserved deposits are predominantly fluvial and estuarine facies, representing the falling stage and lowstand system tracts. The Holocene transgressive records are dominated by muddy material, mainly represented by estuarine facies with local variations. The transgression culminated in Late Holocene deposits of Patos Lagoon, representing the highstand system tract. The depositional pattern of the vertical succession was controlled by eustatic variations, while the autogenic forcing (paleogeography and sediment supply) modulated the local facies variation.</p></div
    • …
    corecore